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Abstract

Deterministic control of complex systems, particular those with multiple components exhibiting high degrees
of uncertainty and asymmetric behavior, is subject to both unpredictable error and computational performance
limits.  This is seen particularly in systems whose components (such as robots, satellites and other “agent”
devices) are constrained by limited size, power and computational capacity, such as in remote operations such
as  space-based  engineering.   Stochastic  approximation  and  randomized  algorithm  methods  offer  sound
alternatives when coupled with adaptive pattern recognition and machine learning, plus experience-trained
heuristic models.  Heterogeneous approaches that can incorporate learning and self-correction models during
remote  autonomous  operations  offer  solutions  for  reducing  state  space  complexity  and  avoiding  critical
instability and catastrophe points.  Experiments in aerodynamic turbulence are providing a platform and set of
models that can be transferred into such diverse applications as cooperative robotics in construction, network
management, biomedical monitoring, and space-based challenges such as defense from asteroid impacts.

Keywords: complex systems, uncertainty, stochastic algorithm, randomized algorithm, cooperative network,
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Multi-agent networks and autonomous systems including mobile-capable robots become more common in
life-critical  applications  such  as  mass  transportation,  military  and  security  operations,  manufacturing,
healthcare,  and  public  infrastructure  management.   Such systems  are  increasing  in  their  capabilities  and
diversities of tasks that can be performed, including unattended tasks that can be life-saving when performing
optimally  and  according  to  design.   Stabilization,  cooperation  within  confined  physical  and  operational
environments, and solutions to turbulence are among the types of problems that are addressable and desirable,
thus compelling the argument for introducing more robots and more AI (artificial intelligence) into critical
infrastructure and life-support systems.  

However, there are also vulnerabilities that derive from the inherent high dimensionality of any system state
space and the critical points into which functions within such a system may lead.  Simply put, singularity
events can be more sharply and irreversibly catastrophic.  The goal of reducing a complex state space is a
challenge in any environment where there can be uncertainty or fuzziness with regard to that dimensionality
and  the  relations  between  parameters  which  may be  inherently noisy or  difficult  to  measure  under  any
circumstances.  Risks of system instability and criticality are further exacerbated by conditions that can be
introduced from external agents and unpredictable configurations into which even a well-designed and well-
tested system (e.g., aircraft, rail, satellite, wireless network) may be placed.  External-origin disorders and
failures  increase  in  relation  to  not  only complexity within  a  control  system model  and  its  physical  and
computational implementation, but also in response to other paths to vulnerability.

The outcome for end-users (passengers, patients, bankers, communication networks, civil engineers) may be
quite more severe in cases of critical mechanical failure, incidents of cyberhacking, or system critical points
and singularities that were not projected during the design process.  The increased capabilities (as well as the
sharper vulnerabilities) may often be linked directly to the capabilities (and limitations) of machine learning
and artificial  intelligence  (AI)  mechanisms,  coupled  with  the  performance  speeds  and responsiveness  of
computing  and communication  devices  for  managing the  individual  components  and composite  systems.
Supercomputing, high-bandwidth and AI can offer a “double-edged sword” in many respects – improved or
optimal performance and beneficial results,  when everything is running smoothly,  or else true “crash and
burn” catastrophic results when some critical point has been reached, especially if the existence of the critical
points or regions in a system's performance are unknown or insufficiently predictable.
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All  of these issues become even more delicate  and potentially severe  in  impact  when the operations are
conducted in remote environments such as orbital, lunar or interplanetary space.  The majority of space-based
tasks,  to date, have been generally limited to singular (even composite)  devices (e.g.,  satellite or  landing
rover) with limited variations in the type of interactions that  may take place.  As complex as have been
missions to Moon, Mars, Jupiter,  Saturn,  67P/Churyumov–Gerasimenko and other destinations, there have
been limited and strongly constrained operations involving two or more robot devices interacting with each
other and/or with manipulation-type operations involving other objects such as an asteroid or a fragment of
space debris.  Moreover, command and control involving human operators has been highly constrained in
order to accommodate normal signal  transmission delays  as well  as periodic and asymmetrical  breaks in
uplink or downlink signaling. Space robotics has, until recently, been kept quite simple in comparison to what
demands are now emerging, particularly in some areas of space engineering.

The growth of interest and the emergence of capable instrumentation – coupled with the need for productivity
and commercial return values - demands much more complexity in future space operations. These include
space-based  construction  and assembly for  both  habitation  and manufacturing,  asteroid mining,  and also
asteroid deflection and other forms of NEO impact deterrence.  This “demand portfolio” alters radically the
requirements for intelligent, adaptive, and fault-tolerant control systems.  Deterministic models cannot work
satisfactorily when parameters cannot be identified, measured and estimated with sufficient certainty.  This
critical  claim  is  directed  also  at  such  quasi-deterministic  models  which  include  Bayesian  probabilitistic
networks, neural networks, and other variants of both statistically-based and rule-based “machine learning.” 

It is thus argued here that a new type of thinking about command and control is necessary, and with it, a new
type of computing architecture as well, for the types of machines and systems that offer such dual-impact
concerns which may be termed “Extreme Complex Systems” or XCS.   However, this new cybernetics and
new computation is not simply a move into multi-agent parallelism, which is still inherently deterministic (in
most architectures; Figure 1).  We suggest, on the basis of formal and experimental results, that stochastic,
randomized, and non-parametric-dependent modeling may be often more effective for stable control of such
XCS environments.

Figure 1 --- Hierarchical vs. Multi-Agent Control - but still deterministically based [1]

Such XCS-type systems are not only of a type such as multiple robots working together to construct a space
station on the Moon or Mars, or to perform drilling, ballistic blasts or other forms of trajectory change for an
asteroid, but such examples are among the most clear-cut cases of a class of problems that are presenting
themselves for solutions and for which traditional “linear” thinking and also conventional Turing-Machine
computation is  running into barriers  of  performance and accuracy.   There  are  many other  “earth-bound”
problems that approach or match the complexity, uncertainty and non-deterministic character of space-based
multi-agent robotics – for example, aircraft turbulence, high-density highway traffic, global wireless network
load balancing, and cardiovascular arrhythmia response.

We  make  a  distinction  here  from other  forms  and  levels  of  complexity in  both  natural  and  artificially-
engineered systems.  By XCS we mean those types of systems which are inherently hard to formulate into
models and algorithms to process such models, by virtue of the uncertainties and stochastic,  random-like
natures  of  their  parameters,  and  through  the  complex  relationships  and  inter-dependencies  among  those
parameters.   Computationally,  these  may  be  NP-hard  problems,  but  not  necessarily  so.   Instability  and
insufficiency within a given control system may be not only due to the calculations that must be performed in
order to ascertain values and even value ranges for such parameters.  Limitations on physical hardware and
long-distance communications, for instance in aerospace as well as high-speed rail, subsurface sea, and high-
density highway traffic, curtail the ability to perform calculations that even in “polynomial time” may vastly
exceed the time limits for answers, for decisions on course correction.

An XCS environment can be considered as having an unknown and uncertain structure, where that structure s k
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changes in time instances t0,t1,t2,... The task of understanding how sk changes at specific instances ti  and in
response to certain parameter changes may not be computationally achievable, certainly within finite time
intervals when change (adaptation) is required in order to avoid catastrophic critical values.  The path forward
to understanding how changes and how to adapt in terms of a control system may be realized by  a technique
of dividing the state space into regions, clusters, or cellular networks. Clustering of the state space may be
understood as:

Xsk = {X1 ,X2,..., Xn(sk) } : X = ∪i=1,2,0...,n(sk)Xi, where Xi  X⊂
The goal from a cybernetic perspective becomes then one of identifying changes within dynamically defined
regions or clusters, making use of simplified sampling and adaptation, avoiding the computationally intensive
and deterministic methods which can be less resilient to unexpected and non-linear behaviors, and impractical
from the standpoint of practical engineering, especially in the case of microscopic-sized or ultra-light devices.

Networks of both mobile and stationary robots and other autonomous or semi-autonomous devices are often
characterized by uncertainty in data reporting, sharing and analysis within the network.  Again, these problems
become exacerbated by factors such as physical distance (light-years or simply “light-minutes”), bandwidth
competition, and asymmetric threats (e.g., cyber-hacking).  Furthermore there can be problems of conflict or
“un-cooperativity” which pertain to conflicting agent goals and sharing of resources such as energy (fuel,
accessory equipment and supplies, etc.).  This can also be described in terms of load-balancing problems, but
the problem becomes more complicated as the autonomy and independence of the agent subsystems increases.
Competition over resources can include inadvertent competition for access to a physical connecting port, for
example, or a location for either placing or retrieving some object (e.g., drilling or removing a machine part or
a sample from an asteroid surface).  The overall mission task of the robot network (“team”) may be further
complicated by a combination of other factors, all of which carry elements of uncertainty and undecidability –
for example:

 fuel/power consumption during repositioning or “wait-mode” states

 maintaining a steady position relative to another moving object

 irregular and “wobbly” motion of some target object (e.g., asteroid or fragment thereof)

 collision avoidance and consumption of fuel with reverse thrusters, etc.

 performing work tasks within a prescribed period (e.g., sufficient access to sunlight for solar panels)

The principle challenge with XCS is the issue of undecidability about critical points and regions, also known
as singularities.  A general or comprehensive model of interaction within distributed and non-stationary spaces
that does not allow for the appearance and even dominance of critical points can lead to catastrophic results
(mathematically and physically).   Failure  to  observe  minute  variations  and gradient  changes  can  lead to
irreversible situations.  However, such minute variations may be measured and analyzed much faster through
attention  to  local  neighborhoods  and  cellular-type  regions  or  fields  of  data.   This  path  has  led  to  new
approaches using sets of localized models that have simpler and potentially faster computational loads and
which can be conveniently mapped to parallel architectures. Such models are characterized by asymmetric,
stochastic methods for sampling, estimating, and assessing predictive values for regions in a data space where
changes may otherwise be unobserved within constraints of computational time.

Stochastic programming is one framework for modeling of optimization problems that involve uncertainty in
both the identity and interrelationship of parameters and in their values at given instances and configurations.
Whereas deterministic optimization problems are formulated with known parameters,  real world problems
almost always include some unknown parameters. One of the approaches for solving such problems, when the
parameters are known only within the certain bounds, is called the robust optimization. Here, the goal is to
find a solution, which is feasible for all  such data and is optimal in some sense. Stochastic programming
models are similar in style, but take the advantage of the fact that probability distributions governing the data
are known or can be estimated. The goal here is to find some policy that is feasible for all (or almost all) the
possible data instances and minimizes the expectation of some decision functions and the random variables.
More generally,  such models are formulated,  solved analytically or numerically,  and analyzed in order to
provide  useful  information  to  a  decision-maker.   The  approximation  techniques  are  then  extensible  to
randomized  selection  and  trial  (an  interpolation  process)  of  algorithms  for  adjusting  system parameters
(Figure  2).   In  the  experimental  case  described  here,  this  randomization  is  performed  with  wing-flap
adjustments in response to randomly sampled pressure readings.
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The Local Voting (LV) control protocol developed by Granichin et al [1] is one such model.  It operates with a
nonvanishing step-size for conditions of significant uncertainty and external disturbances [2]. The objective is
to detect changes that may be insignificant in most cases but which can be

Figure 2 – Random selection of estimation and control
coupled with learning and optimization of choice [1]

indicative  of  developing  conditions  that  could  have  irreversible  effects.   This  stochastic  gradient-like
(stochastic approximation) method has also been used before in other works (see, e.g. [3], [4]) but with a
decrease to a zero step-size. Usually, the stochastic approximation is studied for unconstrained optimization
problems, but the above-mentioned results stimulated the development of new approaches [5] to track the
changes in the parameter drift using the simultaneous perturbation stochastic approximation [6].

An  experimental  platform has  been  developed [1]  (Figures  3-6)  which  addresses  one  major  problem in
aerodynamic  stabilization  during  turbulence,  focusing  upon  wing  surface  pressure  points  as  the  key
observable parameter.  This may be considered as a prototype for use of the LV protocol to other applications
including the interactivity among a group of cooperating robots, or the dynamics of one or several robots
manipulating an unwieldy, relatively amorphous and free-standing object, such as an asteroid or other object
in low-gravity or zero-gravity (e.g., “space-debris” in near-earth orbit).  In such a case the “turbulence” is not
present in a classic aerodynamic or hydrodynamic phenomenon but there are comparable dynamics in the
forces exerted between the target object and the robot apparatus operating with it.  Simple joining of satellites,
robots,  and manipulation of fixed-geometry parts in zero-G space offers challenges that are “extreme” in
comparison to those in an earth-gravity or planet-gravity region, and the demand for computational simplicity
and speed (other than what can be provided by impractical “supercomputers” or machines requiring cryogenic
environments (e.g., contemporary “quantum computers”) becomes mandatory.

Consider a wing structure whose surface is covered with actuators that serve as mini-wingflaps, each coupled
with a pressure sensor, such as illustrated in Figure 3. Each sensor-actuator unit may be considered as an
active agent  in a computational  network.   However,  sampling – and motor response – can be performed
asynchronously and asymmetrically – this derives from the use of the stochastic approximation methods.

Figure 3 --- “Wings with feathers” [1]

Let xi
k be the integrated pressure deviation for “feather” ai – data derived from sensor measurement

Agent dynamics may be described as: xi
k+1 = f ( xi

k, ui
k ), i  N = {1,...,n} ∈

Observations: yi
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Dudziak, Granichin: MIRNOVA Program paper for RTC Extreme Robotics 2017



5

In a turbulent flow environment, with no responsive adjustments to the sensor-actuator units, LV readings
across the wing surface will resemble a “kaleidoscope” effect among the regions, as shown in Figure 4 below.
All actuator units “feathers”) in the wing remain unadjusted and with no change in orientation in response to
changes  in  applied external  pressures.   The consensus  “goal”  state  (illustrated in  Figure  5)  provides  for
uniform or  within-threshold  values  from all  LV “cellular  regions”  (clusters)  during  turbulent  conditions,
achievable in this case through servo-controller adjustments of the sensor-actuator “feather” units.  

Figure 4 --- Wing sensor field under turbulence [1]        Figure 5 --- Wing consensus state under turbulence [1]

Figure 6 – Experimental Wing Sensor Platform [1]

In this given experimental case the LV clusters are statically defined by the geometry of the sensor-actuator
units (Figures 3 and 6).  However, stochastic approximation and randomized sampling and perturbation is not
limited to a static architectural model of the given system, but quite to the contrary.  A conventional aircraft
wing, and the entire vessel, constitutes a static geometry – the wing has a defined and permanent geometry.  In
other applications and tasks the LV regions need not be uniform, nor static, in their geometry. For instance,
consider cooperative agents working with interchangeable components (such as tool fittings) in physically
dynamic environments with unpredictable kinetics (such as an asteroid in the process of being mined or split
into fragments with the intention of reducing impact threats to Earth or some other habitation).  It is possible
to create different “dynamic” maps of LV cellular regions and also larger assemblies of clusters, with different
geometries that correspond to how the system is being affected by its environment at any given time period.

Within  XCS  operations  there  are  critical  time  intervals  for  such  adaptations  that  can  avert  an  critical
“singularity”  event  affecting  the  entire  system.   Adaptation  of  wing  surfaces  (and  potentially  also  other
components) in an aircraft to atmospheric turbulence requires that decisions be made regarding adjustments of
multiple actuators.  Randomized alterations to small regions (clusters) of the system space have two unique
advantages over models that attempt to comprehensively address the entire system.  First, results can generally
be  achieved  faster  and  with  fewer  computational  resources.   This  is  significant  for  mobile,  remote  and
compact device platforms (such as satellites and other space vehicles, robotic or otherwise).  Secondly, and
very significantly, errors in the decision process – which can be frequent in beginning stages of a cybernetic
system adaptive learning process – will be more localized, more containable, and more easily correctable, than
errors  which  affect  large  sectors  of  some  system performance.   Drawing  from the  illustration  of  wing
adaptation to turbulence - adjustment of several “feather” actuators, in a way that has an adverse or otherwise
non-beneficial effect on the overall system, will (generally) be more easily correctable and offset by other
adjustments, in contrast to a system-wide adjustment that may be irreversible.
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A Thought-Experiment with “Cosmic” Implications

Consider a network of 10, 20, 50 or more robot devices, each powered by an ion propulsion engine, each
equipped  with  a  toolset  that  may  consist  of  drills,  impactors,  chisels,  cables  and  grappling  hooks,  and
apparatus for placing ballistic charges.   These form a cooperative team of robots working on an asteroid
(perhaps 10m – 20m in approximate diameter) traveling in space, perhaps even on a potential collision course
with Earth.  There is limited opportunity for use of massive or physically cumbersome supercomputing, and
real-time human or even AI control from Earth may be completely out of the question.  The objective is to
alter the asteroid's trajectory or to otherwise reduce its capacity for surface impact or for a severe air burst
with consequences for human life Earth.  Tunguska and Chelyabinsk offer two actual case histories within the
past century-plus.

Consider the stochastic approximation and randomized algorithm methods being applied within a sensor-
motor control system that is intended to optimize the cooperation among several robots to orient the asteroid
rock and to configure the positioning of robots and tools for a variety of engineering tasks. The range of
operations spans from drilling to use of ballistics, kinetics, gravitation mass adjustments and the use of nets
and tethers.  All of these decision processes ultimately depend for their possible successful completion upon
the control of multiple units in what amounts to being a turbulent, dynamic, uncertain environment in which
there are many critical points within the overall system state space, and wherein there is a high degree of
uncertainty, noise, and unpredictability.  The “turbulence” is not involving air, water or any physical “fluid”
but it involves the movements and positioning of multiple bodies, the largest and most massive being the least
controllable and adjustable (namely, the asteroid object).  During all of this process there are two major limits
that have critical “countdowns” - the amount of time that can be expended operating the robots, because they
all  have finite  fuel  and power  reserves,  and the amount  of  time  before  a projected Critical  Point  of  the
asteroid's  movement,  namely a  point  beyond which there  will  be  irreversible  consequences  of  impact  or
atmospheric burst.

Control functions may be distributed across virtual as well as literal physical surfaces and spaces.  An aircraft
wing and fuselage surface has distributed forces and air pressures which can be measured as points, then as
cellular neighborhoods, then as increasingly larger regions.  Parallel and competing analysis can provide sets
of points where adjustments should be made that will offset pressures positively or negatively and lead to a
stable laminar flow, the goal state for the plane in flight.  The same model can be applied to the virtual space
of robots manipulating amorphous shapes that have multiple axes of motion and angular momentum.  There
are goal states which involve positioning of devices and avoidance of collision impacts including those that
could occur between the cooperative robots.  The suggestion made here is that for some levels of extreme
complexity, a rethinking of what we mean by “control” and by “learning” and indeed by “intelligence” is
required, and in this process, also, a rethinking of how we can perform the computations that are required to
operate multiple motors in parallel.  We are only at the beginning of what appears to be a revolution in how
we think about computability and control, but the key may be found in looking at the simpler ways that some
tasks are done in Nature, in Biology, more than at any other example.  Flies and mosquitoes fly very well and
avoid obstacles and threats.  Synchronized swimmers and dancers do not rely only upon knowing the score
and the choreography.  Infants learn to handle balls and toys first with touch, then with eyes, and last of all
comes  learning  via  discourse,  logic,  and  formal  arithmetic.   Food  for  Thought,  in  a  world  increasingly
dominated by Extreme Complex Systems.
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