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Quantized transitions between turbulence states that are characterized by 
high degrees of non-linear stochastic dynamics suggests that there may be 
techniques for improving both the predictability and control of such states, 
particularly the highly critical transitions that can create extreme vehicle stress 
and compromise vehicle safety and integrity.  Investigations into meta-stable 
structures within dynamic flows create limits and bounds on transitions from 
one behavioral condition into another, thus providing a type of “quantization” 
between states that are characterized by high degrees of turbulent and chaotic 
internal dynamics.  Such flows can be detected and measured through 
localized, cell-like neighborhoods that comprise networks of communicating 
asynchronous sensor-actuator processing elements.  This leads to the prospect 
of designing externally tunable algorithms for control systems (including both 
human and autonomous piloting systems) within a variety of aircraft and 
airborne machines.  Analysis of probable interactions and consequences from 
interactions between an aircraft and various upcoming turbulence situations – 
both natural (e.g., weather formations) and man-made (e.g., intentional actions 
and countermeasures including incoming ballistics) – can potentially yield real-
time solutions for altering an airborne vehicle's path, dynamics, or execution of 
effective airborne countermeasures. In addition to improving survivability and 
aircraft durability, this can also aid fuel efficiency.  Improved understanding of 
how specific turbulence states can and cannot transform into different and 
more manageable states, or into less turbulent conditions, can be valuable in 
the design of diverse types of airborne vehicles and their control systems. 

 

 

I. Introduction 

Turbulence comes in many varieties and often without advance warning for aircraft, as 

many pilots and frequent travelers know from experience.  Kolmogorov and Arnold studied 

the problem of categorization for different types of turbulence, but in the past eighty years 

there has been little to show how any characterization of turbulent flow types, in air or water 

or any other medium, could be employed in manners other than to minimize and avoid the 

turbulence. The question arises as to how it may be possible to achieve two seemingly 

diametrically opposite goals.  First, one wishes to minimize negative effects of such 

turbulence and to stabilize a vehicle subjected to such non-linear dynamics, in its flight 

performance and with respect to its system consistency (e.g., its mechanical structures, 

engines, and that which may be inside, such as a crew and complement of passengers).  

Secondly, one desires to optimize the aero- or hydrodynamic flows over the body of a vehicle, 

extended over sufficient intervals of time, in order to optimize energy consumption and 

thereby even contribution to minimization of fuel consumption by the craft.  Going further 

into the domain of what has not been tried and has been generally avoided, there appear to be 

few inroads made into the speculative terrain of questions regarding active uses of turbulence, 

for both the benefit and the disadvantage of aerospace (or aquatic) vehicles.  Restricting our 

investigations to the former, our investigations have begun into how turbulence, both natural 

(e.g., weather-induced) or artificially induced by some form of technology, could be applied 

in the domain of both defensive and offensive measures by aircraft (manned or unmanned) or 
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other support forces.  In other words, turbulence phenomena may be used constructively, in a 

manner analogous to how auditory and electronic noise can be employed to cancel out the 

noise effects and produce an ambient or else an electronically secure environment. 
 

The key to such creative uses of turbulence in any medium are linked with being able to 

harness the energy pattern as it is interacting with some object, such as the surface of an 

aircraft wing and fuselage.  That ability depends upon recognition and characterization – 

quantification of some set of parameters within the subject system (and not only parameters 

concerning the turbulent media per se, by itself (e.g., air or water).  Thus we are led to “square 

one” of the issue of modeling a system whose state-space may be vastly uncertain, fuzzy, and 

indeterminate, unless we can achieve some ability to model that state-space dynamic in a way 

that is simpler, faster, and sufficient.  The argument made here in this paper is that the answer 

to having such an ability, in the world of vehicles operating in turbulent aerodynamic (or 

hydrodynamic) environments, is not in simply having bigger and faster computer engines to 

assimilate vaster quantities of data, but rather to radically simplify the entire process, from the 

data being collected to the calculations being performed as part of any modeling process. 
 

This is radical because it goes against the generally accepted practices of engineering and 

information processing by the use of calculators which have “grown up” to be called 

computers but which are still quintessential “Turing machines” at heart (even those which 

strive to do their “number-crunching” in massive parallelism through the employment of 

arrays of qubits that can be briefly operating in a kind of lock-step dance through artificially 

induced quantum entanglement).  So how can the modeling process, dependent upon the 

measurement and assignment of values to a large and potentially dynamic set of system 

parameters (many of which will at varying times be unobservable, uncertain or in error), get 

simpler even as the number of dimensions in a problem (or the number of n-axis freedom of 

motion robots operating in a cooperative environment) increases even exponentially? The 

answer may be flying around us and overhead in the wings of birds, and “feathers” in a 

figurative sense may be more important in the future of aerospace flight, oceanic sailing, or 

other robotic and robot-like activities than is likely to be imagined. 
 

Motivations and inspirations for a new approach to understanding and harnessing 

turbulence originate from many sources, not the least of which are the birds and bees of the 

fields and skies, literally so.  Once again, the focus is on aerodynamics, but many of the 

points about to be made here – and conducted in our experimental platform – with respect to 

air, apply as well to water, and to the creatures who have some hundreds of millions of years 

of extensive prior experience in mastering hydrodynamics under all manner of non-linear 

conditions, the fish and sea mammals of our world.   
 

Here, we begin with concretely phenomenological examination of bird flight and 

behavior in widely different climate zones and weather conditions, one discovers that feathers 

are an extraordinarily unique functional surface for control on a massively parallel planar 

scale, beginning with sensing capabilities that are responsive to minute variations in 

orientation for feather stems connected with the tissue in the wing, and relying for that super-

sensitivity on the basic design of a feather as a surface for reacting to the flow of air current 

and the changes in air pressure over small and semi-amorphous regions of the feather's 

surface.  The covert feathers on the dorsal region of a bird's wing demonstrate a function of 

operating as a sensing array that will react to pressure changes and directional gusts, thereby 

transmitting information which results in modifications to wing geometry and changes in 

flight patterns. 
 



 
 

 

 

 

Figure 1. Covert feather sets  in eagle wings responding to varying pressures and gusts 
 

 

 

Figure 2. Pressure-actuated sensitivity within covert feather sets of bird wings (from Mohamed et al, [15] ) 
 

However, in the realm of synthetic systems, machines whose designers may attempt to 

build in emulation of Nature, there are issues of granularity in the scale of measurement and 

performance in the computations.  Furthermore, from the standpoint of engineering, there are 

immense issues of practicality – weight and cost of components, complexity in design and 

assembly, durability and consistency, maintenance. An airplane with feather-sensor wings is 

likely to never get off the ground, literally or from the perspective of system engineering and 

cost accounting combined.   

 

The approach pioneered by Granichin and colleagues at Saint Petersburg State University 

[1-6] is based upon the mathematics underlying how turbulence can be measured and 

estimated in a manner that circumvents many of the problems faced by deterministically-

based architectures which impose unrealistic computational requirements upon inherently 

non-deterministic systems.  At the heart of the stochastic approximation methodology is the 

measurement of random parameters in local neighborhoods which may be considered as 

stochastic cellular automata, the boundaries of which can change dynamically and the 

measurements within which are focused upon boundary values with other contiguous cellular 

automata neighborhoods that collectively span the surface (or, extending the model the 

volume) of the system treated as a topological representation of a state-space. 

 

There will be some implicit goals that can be expressed as rules governing such systems.  

For birds and aircraft, the simplest such system-level rules are to achieve and maintain flight 

and to conserve energy – or in converse terms, to use as little fuel as possible to stay aloft and 



 
 

 

mobile as long and as easily as possible.  Another important principle present in biological 

systems and arguably required in complex machines designed and constructed by humans 

(and other intelligent machines) is to minimize the cost of all the information control and 

computation required to achieve those primal basic goals. 

 

II. A Control Model that localizes and simplifies and makes things “safer” 

The Local Voting control (LVC) protocol is based upon simultaneous perturbation 

stochastic approiximation (SPSA) as developed by Granichin et al [5, 6].  The LVC is one 

method for reducing both the size and the repetitive, uniform structure of search spaces and 

tests.  A key element to LVC is using a non-vanishing step-size for conditions where 

significant uncertainty and external disturbances can be expected [14]. The objective is to 

search for “impending critical singularity points;” i.e., to detect changes that may be 

insignificant in most cases but which can be indicative of developing conditions that could 

have irreversible effects.  A singularity within the state-space measurement process may be 

likened to a Thom/Zeeman catastrophe. While mathematically there may be reversibility, in 

many physical, biological, social and informational systems there may not be such.  Figure 2 

gives an illustration of the four classic Thom-Arnold catastrophe functions. [11, 12]  

Figure 3. Four catastrophe functions (after Thom and Arnold) 
 

The use of stochastic, randomized selection of local areas to measure and then lead into 

choices for the next areas in turn to measure, is based upon an important counterpart, and this 

is that some type of adaptive learning process is underway, built-in to the system inherently.  

Without some adaptive meta-level learning and retention, the randomness of selection at the 

lowest scale will perpetuate indefinitely and this will defeat the goal of making the system 

“smarter” - i.e., quicker at skipping unnecessary observables and even data sources – even 

regions of data points.  Randomness is at the beginning, but it needs to be tempered and 

trained by higher-order functions that can evaluate and rearrange what should be examined in 

future cycles.  This is where simultaneous perturbation stochastic algorithms (SPSA) [14] 

provide a mechanism through a descent method capable of finding global minima, sharing 

this property with other methods as simulated annealing. Its main feature is the gradient 

approximation that requires only two measurements of the objective function, regardless of 

the dimension of the optimization problem.  Unlike Finite Differences (FDSA) and other 

stochastic approximation, SPSA perturbs all directions simultaneously and for any system 

with p components, SPSA requires p times fewer function evaluations than FDSA. 



 
 

 

III. An experiment with wings and feathers 

 

An experimental platform has been built in order to test the means by which LVC 

measurements can spread over a virtual surface such as an airplane wing. This addresses one 

major problem in aerodynamic stabilization during turbulence, focusing upon wing surface 

pressure points as the key observable parameter.  This may be considered as a prototype for 

use of the LVC protocol to other applications including the interactivity among a group of 

subsystems within a single vehicle (such as an aircraft) or a group of cooperating robots (e.g., 

within UAV operations for agriculture or space applications) [16].   

Consider the wing structure whose surface is covered with pressure sensors coupled with 

servo-controlled flap actuators.  The actuators serve as mini-wingflaps, each coupled with a 

pressure sensor, such as illustrated in Figure 4. Sensor data can be directly transformed into 

servo-actuator commands for adjustment of the flap element, either without (bypassing) or 

inclusive of transmission of pressure data to a regional-cluster processor.  Thus, individual 

sensor-flap components or arbitrary groupings (clusters) of such components can operate as 

independently of others on (in this case) the wing (or on any other vehicle surface).   

Each sensor-actuator unit may be considered as an active agent in a computational 

network that is loosely and dynamically connected as cellular-automata neighborhoods.  This 

dynamic nature of the local neighborhood sets of sensors is important for enabling the wing to 

“measure itself” in flight – a correspondence to the covert feather geometry and anatomy of 

biological birds.  Sampling – and motor response – can be performed asynchronously and 

asymmetrically – this derives from the use of the stochastic approximation methods. This 

differs from other strategies employed such as in [15]. 

Figure 4 --- “Wings with feathers” [6] 
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In a high-turbulence flow environment, with no responsive adjustments to the sensor-

actuator units, LV readings across the wing surface will resemble a “kaleidoscope” effect 

among the regions, as shown in Figure 5 below.  All actuator units “feathers”) in the wing 



 
 

 

remain unadjusted and with no change in orientation in response to changes in applied 

external pressures.  The consensus “goal” state (illustrated in Figure 6) provides for uniform 

or within-threshold values from all LV “cellular regions” (clusters, neighborhoods) during 

turbulent conditions.  This is achievable through servo-controller adjustments of the sensor-

actuator “feather” units.  In principal, the number of sensor-flap units on a given surface (e.g., 

wing or fin) is limited only by the size, weight and integration requirements for each unit. 

 

Figure 5 --- Wing sensor field (“raw”) in turbulence [6]        Figure 6 --- Wing consensus (stable) state [6] 

Figure 7 – Experimental Wing Sensor Platform [6] 

In this given experimental case the LV clusters are statically defined by the geometry of 

the sensor-actuator units (Figures 4 and 7).  However, stochastic approximation and 

randomized sampling and perturbation is not limited to a static architectural model of the 

given system, but quite to the contrary.  A conventional aircraft wing, and the entire vessel, 

constitutes a static geometry – the wing has a defined and permanent geometry.  In other 

applications and tasks the LV regions need not be uniform, nor static, in their geometry. For 

instance, consider cooperative agents working with interchangeable components (such as tool 

fittings) in physically dynamic environments with unpredictable kinetics (such as an asteroid 

in the process of being mined or split into fragments with the intention of reducing impact 

threats to Earth or some other habitation).  It is possible to create different “dynamic” maps of 

LV cellular regions and also larger assemblies of clusters, with different geometries that 

correspond to how the system is being affected by its environment at any given time period. 

In a real-time flight operational scenario there are critical time intervals for such 

adaptations that can avert an critical “singularity” event affecting the entire complex system 

consisting of robots and the asteroid unified within the state-space.  Randomized alterations to 

small regions (clusters) of the system space have two unique advantages over models that 



 
 

 

attempt to comprehensively address the entire system.  First, results can generally be achieved 

faster and with fewer computational resources.  This is significant for mobile, remote and 

compact device platforms (such as satellites and other space vehicles, robotic or otherwise).   

Secondly, and very significantly, errors in the decision process – which can be frequent in 

beginning stages of a cybernetic system adaptive learning process – will be more localized, 

more containable, and more easily correctable, than errors which affect large sectors of some 

system performance.  Drawing from the illustration of wing adaptation to turbulence - 

adjustment of several “feather” actuators, in a way that has an adverse or otherwise non-

beneficial effect on the overall system, will (generally) be more easily correctable and offset 

by other adjustments, in contrast to a system-wide adjustment that may be irreversible. 

For in-flight experimentation, a commercial UAV drone is being employed.  The MG-1 

unit from DJI, shown in Figure 8, is employed in such commercial tasks as crop-spraying.   

 

 
Figure 8 – MG-1 UAV platform for field testing 

IV. Conclusion 

Next stages of research will focus upon physical experimentation using the laboratory 

prototype (shown previously) and also a UAV drone.  The latter is equipped with sensor-

actuators under a variety of artificial turbulence conditions including wind tunnel operations, 

as well as the definition and refinement of turbulence categorization and system training. 
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