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Abstract— The traditional detailed mathematical description
of the motion of complicated complex systems with many
transducers/sensors and actuators often leads to a very hard
problems involving an extremely high-dimensional state space.
However, multi-agent technology can effectively solve many of
such problems by replacing the general model of interactions
in a complex system with a set of local models and their ag-
gregation (clustering). In this paper we apply the results of the
synchronization and consensus achievement within the network
control to the flight control tasks when a vast array of sensors
and actuators (“feathers”) is distributed over the surface of an
airplane. The usage possibilities of Local Voting Protocol for
the adaptation of airplane’s “feathers” in a turbulence flow are
examined.

I. INTRODUCTION

Miniaturization and increased performance of calculators,
sensors and actuators can significantly extend the practical
applicability of the modern scientific control, identification
and estimation theories. At the same time, there are possibil-
ities of intelligent control of complex mechatronic systems
during the transition process and turbulence. For example, the
clustering of disturbing factors in the environment may lead
to changes in the structure of the state space (dimension). For
multi-agent systems, on the one hand, when a consensus in
the behavior of certain groups of agents is reached the total
dimension of the whole state space is reduced. On the other
hand, the effect of disturbances can result in misalignment
of agents’ behavior in a group that will cause the increase in
dimension of the state space. Theoretical issues of adaptive
control in the dynamic environment with time-varying struc-
ture of state spaces of plant and environment are not fully
understood since the relevance of realizations was limited by
technical capacities.

In [1], it is shown that traditional approaches to the model
description are inefficient for nonequilibrium processes since
the structure of the state space may change with time.
There are experimental observations illustrating the presence
of changing subsystems at mesoscopic scale (between the
micro and macro) in nonequilibrium processes. Examples
include the clustering in the flow of concentrated disperse
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mixtures, the formation of multi-scale vortex structures in
turbulent liquid flows and plastic flow of solids under im-
pulsive loading, as well as the hierarchy of structures in
living systems. In case of open thermodynamic systems the
synergistic processes of self-organization at the mesoscale
level (due to the internal control feedback) together with an
external disturbance (or control) lead to the emergence of
new dynamic structures which are, in fact, discretizations of
the space and time of nonequilibrium systems.

In [2], the networked systems of control and distributed
parameter systems are considered as instances of dynamical
systems, distributed along the discrete and continuum space,
respectively. This unified perspective provides insightful con-
nections, and gives rise to new questions in both areas.
Among new directions in the research of the distributed sys-
tems the deep inner connections were outlined between the
theory of the distributed systems and problems of turbulence
and statistical mechanics.

The multiagent technology can effectively solve numerous
problems arising in the distributed and nonstationary systems
by replacing the general model of the interactions in a
complex system with a set of local models. The problems of
distributed interaction in dynamical networks has attracted a
lot of attention in the last decade (see surveys [3]–[5]). This
interest has been driven by applications in various fields,
including the information exchange in multiprocessor net-
works, transportation networks, production networks, sensor
and wireless networks, coordinated motion for unmanned
flying vehicles, submarines and mobile robots, distributed
control systems for power networks, complex crystal lattices,
and nanostructured plants.

For the new applications of the theory to the flight
control based on a vast array of the sensors and actuators
distributed over the aircraft surface we use Local Voting
(LV) control protocol with nonvanishing step-size, justified
for the conditions of significant uncertainty and external
disturbances [6]. This stochastic gradient-like (stochastic
approximation) method has also been used before in other
works (see, e.g. [7], [8]) but with the decreasing to zero
step-size. Usually, the stochastic approximation is studied
for the unconstrained optimization problems, but the above-
mentioned results stimulated the development of new ap-
proaches [9] to track the changes in the parameter drift using
the simultaneous perturbation stochastic approximation [10].

The paper is organized as follows. In Section II we
describe the nonequilibrium statistical mechanics approach
for the airplane flying in the turbulence flow. The model
of an airplane with “feathers” is considered in Section III.
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In Section IV the Local Voting Protocol is presented with
main assumptions and main results. Section V contains the
concluding remarks.

II. NONEQUILIBRIUM STATISTICAL MECHANICS
APPROACH FOR THE AIRPLANE IN A TURBULENCE FLOW

In the real world, any system consists of a huge amount
of elementary units with complicated interconnections. The
traditional methods for defining dynamical systems are based
on a state space X ⊂ Rdim, dim ∈ N, and dynamic
equations

ẋ = A(x, u, w, θ), x(t) ∈ X (1)

describing the time-evolution of the state vector x(t) ∈ X.
Hereinafter the symbol dot is used for the operation of
differentiation over time. Control vector u is a controllable
external input which, in simple words, plays a role of
“an intermediary” between the system and the environment,
while the uncontrollable disturbances are represented by the
vector w. The form of the dynamical equations is usually
defined by a certain finite set of the system parameters
θ ∈ Θ. In general, the state vector x(t) represents some
integral characteristics related to the whole groups of the
system elementary units. For example, position, velocity,
and rotation of groups of particles moving together can be
approximately described as an ideal solid body, or a set of
similar characteristics for a group of bodies and properties of
the interconnections links. The units with the similar behav-
ior are usually called “Cluster”. In the laminar wind flow
an aircraft is considered as an ideal solid moving in the flow
with integral characteristics as a one cluster. Its dynamics
can be considered in R10 (position, velocity, orientation and
engine thrust associated with the center of gravity). The
pressures on its wings surface can be considered as nominal.
If we consider the wings surface divided by elementary units
(“feathers”) with the similar orientations (see Fig. 1), then
all feathers refer to the same cluster, they have similar values
(zero) of wind pressure deviations from the nominal values
(it corresponds to the green color).

Fig. 1: The aircraft in a laminar wind flow.

The airplane motion in an ideal gas at velocity V(t) is
governed by the equation

M
dV(t)

dt
= Fe + Fd + Fg + Fl, (2)

where M is the total airplane’s mass, Fe, Fd, Fg, Fl are the
forces acting on the body: engine thrust, drag, gravity and
lift, respectively.

If the velocity V(t) is constant: V(t) = V0, and the
airplane moves along the first axis V0 = (V0, 0, 0), then
dV(t)
dt = 0 all forces are counterbalanced.
The flow field around the airplane of a given shape is

governed by the transport equations for the mass density and
mass velocity ρ0, v0

(v0 · ∇)ρ0 + ρ0∇ · v0 = 0, (3)
ρ0(v0 · ∇)v0 = −∇p0 (4)

under the impermeability boundary conditions. For a body
of the given shape all hydrodynamic fields are assumed to
be known.

Each system communicates with the environment e.
Sometimes environment e(t), that is influencing the sys-
tem, may be considered as a part of uncontrollable distur-
bances w(t) (see Eq. (1)). Serious difficulties arise when
at given moments of time T0, T1, . . . , Tm, . . . the structure
s0, s1, . . . , sm, . . . of environment disturbances e(t) changes
significantly. We make the assumption that the structure
changes occur sufficiently infrequent, i.e. ζ = minm |Tm+1−
Tm| is sufficiently large. Fig. 2 shows the different pressure
deviations (different colors) for different units of airplane in
case of a turbulent wind flow when all feathers remain the
same (equal) orientations.

Fig. 2: The aircraft in a turbulence wind flow.

If the hydrodynamic field is slightly perturbed by the
pressure field pm in turbulent wind flow, the linearized
equations for the small perturbations ρm(r, t),vm(r, t) are
nonstationary

∂ρm
∂t

+ (v0 · ∇)ρm + ρ0∇ · vm = 0, (5)

ρ0
∂vm

∂t
+ ρ0(v0 · ∇)vm = −∇pm. (6)

The nonstationary flow affects the body movement

M
dVm(t)

dt
= Fm

e + Fm
d + Fg + Fm

l ̸= 0. (7)

The set of linear equations (5)–(6) adequately describes
the flow fields perturbations only in case of small spatial
gradients and low speed of their changes, i.e. near the state
of local equilibrium.

Starting from the Renaissance and up to the second part
of the XX century the linear approach was dominant in the
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engineering. This approach is based on the assumption that
the net effect is equal to the sum of all individual effects,
and that the response to the effect is directly proportional to
the effect. For the linear systems the effect is uniquely deter-
mined by the cause. So, linear mathematical models imply
unambiguous determinism. In the framework of such models
only the stable processes are studied. The stability problem
is considered with a small disturbances in the linear laws.
Such processes occur in systems near the thermodynamic
equilibrium and are well reproduced in experiments

However, in [1] it is shown that the above set-up is often
too stiff to accommodate a dynamic “transitional” processes
in the systems caused by the rapid change of external
conditions. The high-rate processes can decline the system
state far from the equilibrium. Under the nonequilibrium
conditions the linear approach fails and the effect starts to
deviate from the cause and can be spread over space. The
behavior of even simply constructed nonequilibrium systems
can be very complex. The dynamic complexity can arise
due to the multiple interactions of open system with its
surrounding.

If the perturbed flow field changes rapidly in both space
and time, the usual hydrodynamic equations (5)–(6) are no
longer valid for calculations of the additional nonequilibrium
forces (7) affecting the body. The nonequilibrium statistical
mechanics states that the general transport equations are not
entirely localized under essentially nonequilibrium condi-
tions [11], [12]. Due to the incomplete description of high-
rate processes, the most fundamental result is given by the
general integral relationships between the conjugate thermo-
dynamic fluxes and forces (gradients of macroscopic vari-
ables), which remains valid far from equilibrium throughout
the relaxation regimes. Within the conventional continuum
mechanics the momentum flux Π is a stress tensor, which
consists of two parts Π = −pI+P where p is the pressure, I
is the unit tensor (reversible part), and P is the viscous stress
tensor (irreversible part). Far from equilibrium the stress
tensor cannot be separated into reversible and irreversible
parts. In case of the rapid perturbations the pressure changes
are more important than the slow momentum diffusion
related to viscous effects. Then the integral expression for
the momentum flux in terms of the pressure perturbations
takes a form

Π(r, t) = −
∫ t

0

dt′
∫
V ol

dr′ℜ(r, r′, t, t′)p̄m(r′, t′)I. (8)

The integral kernel ℜ(r, r′, t, t′) is the space-time correlation
function averaging the large pressure gradients of the macro-
scopic fields and forming cluster’s structures at the mesoscale
level. With the substitution of p̄m instead of pm, equations
(5)–(6) become integro-differential and, in contrast to the
differential continuous mechanics models, are valid under
nonequilibrium conditions. These updated equations take the
memory and space non-local effects into account. Being
constructed in the framework of the nonlocal transport theory
[13], [14], the model expression of the kernel responsible for

the structure formation under the impulse external action

ℜs(r, r
′, t) =

1

q(r, t)
exp

{
−π (r

′ − r)
2

q2(r, t)

}
(9)

involves the parameter q, which represents a linear size of
the structure element. In case of the structureless medium,
the averaging scale tends to zero: q → 0, the kernel func-
tion tends to the Dirac’s delta-function, and the governing
equations become differential and correspond to (5)–(6).

III. AN AIRPLANE WITH “FEATHERS”

The above studies shows that we can manipulate the
system elements at the mesoscale level in order to reduce the
forces affecting the system due to the external perturbations.

For the airplane flying in a turbulent flow, let’s assume
that we can use a sort of “feather”-elements which are able
to change the local fluxes around the plane surface and, in
particular, equalize deviations of the pressure on the upper
surface of the airplane. In this case the same reaction of
feathers in the same cluster to the external disturbances
should be expected. The macroscopic reaction of a medium
to the external disturbances should be entirely determined by
the time evolution of the finite-size correlations. Moreover,
the system could demonstrate effects of its internal structure
such as clustering, presented in Fig. 3.

Fig. 3: The aircraft in a turbulence wind flow. Clustering of
“feathers”.

Once the pressure deviation pm(r′, t), generated by the
external turbulent flow, significantly changes at the time
instants T0, T1, . . . , Tm, . . ., by virtue of (8), we get

p̃(r, t) =

∫
V ol

dr′ℜs(r, r
′, t)pm(r′, Tm) (10)

where t ∈ (Tm, Tm+1), p̃(r, t) is the partially equalized
pressure deviation due to the “feathers” collective action.
If the value ζ is sufficiently large then the equalization
process is completed during a time interval τ << ζ when
p̃(r, t) → p̄um = const for “feathers” on the upper surface
and p̃(r, t) → p̄lm = const for “feathers” on the lower
surface.

As far as the integral kernel ℜ in (10) is determined by
the averaging process, for the discrete feathers the integration
is replaced by the sum averaging the pressure deviations pjt
over the cluster i at time instant t

p̄it =
1

|N i
t |

∑
j∈Ni

t

pjt = pit +
1

|N i
t |

∑
j∈Ni

t

(pjt − pit) (11)
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where N i
t is a set of indexes which belong the same cluster i,

|N i
t | is a number of elements in the cluster i. Hereandfuther

the upper index i denotes the number of feather.
In order to answer the question what internal control law

governs the pressure deviation equalization, let us calculate
the full energy of the perturbations. For subsonic speed the
full kinetic energy of turbulent perturbations at the time
instant t is a sum of energies generated by the mass velocity
perturbation field near each feather

E =
∑
i

Ei =
∑
i

1

2
ρi0(v

i
m)2.

According to the Bernoulli’s theorem the pressure pertur-
bation near each feather can be evaluated in the linear
approximation as follows pim = ρi0v

i
0v

i
m. Then, the sum

energy of turbulent perturbations at the time instant t can
be expressed through the pressure perturbations near each
feather

E =
∑
i

Ei =
∑
i

1

2ρi0(v
i
0)

2
(pim)2.

During the pressure deviation equalization the pressure per-
turbation near i-th feather is replaced by its averaged value
p̄it according to (11). Then the discrete form of the energy
perturbation for an element i is

Ei
t =

[
pit +

1
|Ni

t |
∑

j∈Ni
t
pjt − pit

]2
2ρi0(v

i
0)

2
. (12)

The full energy of the perturbation fields is a sum

Et =
∑
i

Ei
t =

∑
i

(
p̄it
)2

2ρi0(v
i
0)

2
. (13)

Minimization of the sum perturbation energy according to
Speed Gradient algorithm in the finite form [15], [16] gives
an equation governing the pressure equalization process

˙̄pit = const− γ
∂Ėt

∂ ˙̄pit
(14)

with gain parameter γ and

Ėt =
dE

dt
=

∑
i

1

ρi0(v
i
0)

2
p̄it · ˙̄pit.

For the pressure difference ∆p̄it = p̄it − p̄ −−−→
t→∞

0 Eq. (14)
takes a form

∆ ˙̄pit = −γ 1

ρi0(v
i
0)

2
∆p̄it. (15)

The solution of Eq. (15) is

∆ ˙̄pit = ∆ ˙̄pit=0 exp

{
−γ t

ρi0(v
i
0)

2

}
−−−→
t→∞

0.

It defines a typical equalization time τ = max ρi0(v
i
0)

2/γ.
Note. We have got the expression for transition time τ .

When the pressure equalization is rapid, and the equalization
time is small compared to the time interval between the
changes of the external turbulent flow τ << Tm+1 − Tm,
then at the time interval [Tm + τ, Tm+1] the most part of

the system units (feathers) has already clustered. The total
number of clusters is much less than the total number of
the system units. In particular, the only one cluster with the
same pressure additives can be formed. We can define new
state variables for each cluster and consider the new system
model for such cluster (integral) variables. The dimension
of this new model will be significantly less then the original
one. This model will be valid during the time interval [Tm+
τ, Tm+1], and it can be linearized for many practical cases.
However, this simplified model will “operate” only for a
finite time interval as long as there will be no further changes
in the structure of external disturbances. The considered
dynamic behavior has common features with many others
complicated problems. The new possible general framework
is discussed in [17] based on cluster flows.

In the next section we propose the possible way to realize
the considered internal control law for an airplane with
“feathers”, and we derive the upper bound for the transition
time in the proposed scheme.

IV. LOCAL VOTING PROTOCOL

We consider the division of the upper airplane surface
into n finite elements (“feathers”) a1, . . . , an (the similar
scheme is also valid for the lower airplane surface). The
plane of “feather” may change its angle (rotate) within
some boundaries. Let us assume that during the short time
interval δ the “feathers” are able to intercommunicate with
their neighbors and slightly vary their angles. For each
“feather” i ∈ N = {1, 2, . . . , n} and time instant tk =
Tm + δk, k = 0, 1, . . . , [(Tm+1 − Tm)/δ], we denote the
average pressure deviation for the “feather”-element ai as
xik and the set of its neighbors as N i

k. The internal control
law (14) takes a discrete form

xik+1 = xik + γ
∑
j∈Ni

k

bi,jk (yjk − yik) (16)

with some gain coefficient (step-size) γ, weight coeffi-
cients bi,jk , initial conditions

xi0 =

∫
ai

pm(r, Tm)dr, (17)

and observations

yik = xik + ξik, i ∈ N, (18)

which contain the error values (noise) ξik. Equation (16) is
called a Local Voting Protocol [6]. We set bi,jk = 0 for other
pairs (i, j) when j /∈ N i

k. The matrix of the control protocol
is denoted by Bk = [bi,jk ]. The corresponding graph with
adjacency matrix Bk is denoted by GBk

.

A. Consensus Problem

The behavior investigation problem of partially equalized
pressure deviation xik (due to the collective action of “feath-
ers”) can be reformulated as a consensus problem.

Definition 1: The network is said to achieve a consensus
at the time instant k if there exists a variable x̄ such that
xik = x̄ for all i ∈ N .
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Though consensus is our desired goal, it cannot be prac-
tically achieved by virtue of the discretization and approx-
imation assumptions alone. For the more realistic problem
statement let us consider a ε-consensus achievement. Further
layouts assume the statistical nature of uncertainties.

Let (Ω,F ,P) be the underlying probability space corre-
sponding to the sample space, the collection of all events,
and the probability measure respectively, E is a symbol of
the mathematical expectation.

Definition 2: The network is said to achieve a probability
ε-consensus with confidential level β ∈ [0, 1] at time k if
there exists a variable x̄ such that P{∥xk − x̄1∥2 ≤ ε} ≤ β
for all i ∈ N where xk is the column of x1k, x

2
k, . . . , x

n
k and

1 is the column of ones.
Definition 3: K(ε) is called a time to the probability ε-

consensus with confidential level β ∈ [0, 1], if the network
achieves probability ε-consensus with confidential level β ∈
[0, 1] for all k ≥ K(ε).

To introduce some properties of the network topology, the
following definitions from the graph theory will be used. The
weighted in-degree of node i is defined as the sum of i-th
row of matrix B: di(B) =

∑n
j=1 b

i,j ; diag{di(B)} is the
corresponding diagonal matrix; dmax(B) is the maximum
in-degree of graph GB ; L(B) = diag{di(B)} − B is the
Laplacian of graph GB ; ·T stands for a vector or matrix
transpose operation; ∥B∥ is the Euclidian norm: ∥B∥ =√∑

i

∑
j(b

i,j)2; Re(λ2(B)) is the real part of the second
eigenvalue of matrix B ordered by absolute magnitude;
λmax(B) is the maximum eigenvalue of matrix B. Digraph
GBsg is said to be a subgraph of the digraph GB if bi,jsg ≤ bi,j

for all i, j ∈ N . Digraph GB is said to contain a spanning
tree if there exists a directed tree Gtr as a subgraph of GB .

B. Assumptions and Theorems
We assume that the following conditions are satisfied.

A1: a) For all k and i ∈ N observations noises ξik are
zero-mean, independent identically distributed (i.i.d.) random
variables with bounded variances: E(ξik)

2 ≤ σ2
ξ . b) For all

i ∈ N and j ∈ N i
max = ∪kN

i
k the appearance of “variables”

edges (j, i) in the graph GBk
is independent random event

and weights bi,jk in (16) are independent random variables
with expectations: Ebi,jk = b̄i,j , and bounded variances:
E(bi,jt − b̄i,j)2 ≤ σ2

b . Additionally, all these random variables
are mutually independent.

A2: Graph GB̄ has a spanning tree, B̄ = EBk.
A3: For the step-size γ > 0 the following conditions

are satisfied: γ ≤ 1
dmax(B̄)

, and ψ(γ) = γRe(λ2(B̄)) −
γ2λmax(Q) > 0 where Q = E(L(B̄) − L(Bk))

T(L(B̄) −
L(Bk)).

Note. If matrix Bk does not vary on k, then Bk ≡ B̄,
ψ(γ) = γRe(λ2(B̄)), and condition ψ(γ) > 0 holds for all
γ since Q = 0.

Theorem 1: If Assumptions A1–A3 are satisfied, β ∈
(0, 1), and

ε =
∆(γ) + (1− ψ(γ))k−1

(
||x0 − x̄1||2 −∆(γ)

)
1− β

, (19)

where ∆(γ) = 2σ2
ξγ

2(n2σ2
b + ∥B̄∥2)/ψ(γ), (∆(γ) =

2σ2
ξγ(n

2σ2
b + ∥B̄∥2)/Re(λ2(B̄)) if Bk ≡ B̄), then system

(16)–(18) achieves the probability ε-consensus with confi-
dential level β for weighted average of the initial states

x̄ =

∑
i g

ixi0∑
i g

i
(20)

where (g1, g2, . . . , gn)T is the left eigenvector of matrix
B̄ [5] (x̄ = 1

n

∑n
i=1 x

i
0 in the case of balanced topology

graph GB̄).
Proof: All conditions of Theorem 1 from [18] hold

under appropriate notations. Hence, we have

E∥xk−x̄1∥2 ≤ ∆(γ)+(1−ψ(γ))k−1
(
∥x0 − x̄1∥2 −∆(γ)

)
.

Using this inequality and applying the Markov’s inequality,
we derive

P{∥xk − x̄1∥2 > ε} ≤ 1− β

i.e. the probability ε-consensus with confidential level β is
achieved.

Eq. (19) gives a way to choice of an optimal step-size for
consensus protocol. In changing conditions it is not possible
to get it but it may be useful to track it via stochastic
approximation type algorithm as in [19].

Theorem 1 gives lower bound ε = ∆(γ)
1−β for the possible

ε level of the probability ε-consensus with confidential level
β. Now we estimate the time to the probability ε-consensus
with confidential β for ε > ε.

Theorem 2: If all conditions of Theorem 1 hold,

x̃0 =

{
ln(∥x0 − x̄1∥2 −∆(γ)), if ∥x0 − x̄1∥2 > ∆(γ),
0, otherwise,

and ε > ε, then inequity

K(ε) ≥ ln(ε− ε)− x̃0
ln(1− ψ(γ))

, (21)

holds for the time to the probability ε-consensus with confi-
dential level β.

Proof: The result of Theorem 2 follows immediately
from the expression (19).

Inequality (21) allows calculation of the transition time τ
for equalizing the pressure after the changing of structure of
the wind flow. We have

τ ≈ δK(ε)

with predefined confidential parameter β ∈ (0, 1) and
approximately consensus level ε. Hence, for the practical
applicability of described scheme we need to check that

δK(ε) << ζ.

Note. The important feature of the control protocol (16) is
that there is no any special tools of “fault analysis” as, for
example, in [20] to determine the time instant Tm, at which
the structure of the incoming flow changes. Feathers begin to
automatically adjust according to the feedback in violation
of consistency pressures deviations from the nominal values.
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C. Stand for Simulation

We developed a stand based on the frame of flying wing
drone to test the algorithm. The frame had 1.5 m wingspan,
0.5 m length and from 10 to 35 mm in the thickness. Almost
all of the drone surface was covered by plates (“Feathers”)
with servos. The number of plates used was 100 pcs. The size
of the single plate was 60 mm × 60 mm in maximum. The
plates were uniformly placed over the surface. Depending
on the location on the drone surface the plates had different
sizes and forms. The plates were moved by servos (Fig. 4)
to change the air flow pressure on them. We used the square
force-sensitive resistor to measure the pressure. Data acquisi-
tion and generation of the PWM control signal were carried
out by the development board Arduino Mega 2560 R3.

Fig. 4: Elements of “feather”.
a – servo, b – light-emitting
diode (LED), c – base, d –
force-sensitive resistor.

One Arduino 2560 pro-
vided the control of 14 ser-
vos and was able to collect
the data from 16 analog
sensors. For our stand we
used 7 boards in total. All
information from Arduino
was collected in the main
computer where we orga-
nized the interconnection
between the nearest neigh-
bors’ plates and the al-
gorithm of interaction. At
current stage of our project
it allows us to get performance analysis for different kinds
of network topology. Six flexible powerful fans were used to
create the air flow in the test room. In addition, we used the
LEDs, which were installed on the plates, for the indication
of consensus achievement status. In the future, we plan to
design a microcomputer to be installed on every plate and
to implement the interconnection without the main computer
and Arduino boards.

V. CONCLUSIONS AND FUTURE WORK

Miniaturization of control plants and high frequency con-
trol actions do not allow a verification of the model of
the movement with the traditional high degree of accuracy.
This fact emphasizes the key problem of adaptive control
development in presence of significant uncertainties and
external disturbances. As noted in the end of Section III,
this problem is more complicated in the context considered
throughout this paper since we have only finite time interval
for the adaptation process. In case of the state space structure
changing with time, we plan to extend our results for the
parameter tracking using SPSA (Simultaneous Perturbation
Stochastic Approximation) [9] and LSCR approach (Leave-
out Sign-dominant Correlation Regions) [21], which was
proposed earlier by M. Campi with co-authors to increase the
effectiveness of adaptive control based on finite (not large)
set of experimental data only [22].
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