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Abstract— Multi-agent control systems have demonstrated 

effectiveness in a variety of physical applications including 

cooperative robot networks and multi-target tracking in high-

noise network and group environments.  We introduce the use 

of multi-scalar models that extend cellular automaton regional 

neighborhood comparisons and local voting measures based 

upon stochastic approximation in order to provide more 

efficient and time-sensitive solutions to non-deterministic 

problems.  The scaling factors may be spatial, temporal or in 

other semantic values.  The exercising of both cooperative and 

competitive functions by the devices in such networks offers a 

method for optimizing system parameters to reduce search, 

sorting, ranking and anomaly evaluation tasks.  Applications 

are illustration for a group of robots assigned different tasks in 

remote operating environments with highly constrained 

communications and critical fail-safe conditions. 
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Multi-agent networks and autonomous systems 
including mobile-capable robots become more common 
in life-critical applications such as mass transportation, 
military and security operations, manufacturing, 
healthcare, and public infrastructure management.  
Such systems are increasing in their capabilities and 
diversities of tasks that can be performed, including 
unattended tasks that can be life-saving when 
performing optimally and according to design.  
Stabilization, cooperation within confined physical and 
operational environments, and solutions to turbulence 
are among the types of problems that are addressable 
and desirable, thus compelling the argument for 
introducing more robots and more AI (artificial 
intelligence) into critical infrastructure and life-support 
systems.   

However, there are also vulnerabilities that derive 
from the inherent high dimensionality of any system 
state space and the appearance of critical points into 
which functions within such a system may lead.  
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Simply put, singularity events can be more sharply and 
irreversibly catastrophic.  Certain singularities may be 
triggered by the inability of the control system in a 
relevant portion of the network of devices to detect 
anomalies and variances which could otherwise be met 
with a counterbalancing response that would 
compensate for the variance and enable the critical state 
to be avoided [9].  This inability may be the result of a 
deterministic sampling algorithm or a dependence upon 
certain heuristics; this has been one of the classic 
criticisms of neural network based pattern classifiers 
and recognizers [12]. 

The goal of reducing a complex state space is a 
challenge in any environment where there can be 
uncertainty or fuzziness with regard to that part of the 
state-space where anomalies and masking events may 
occur and further disturb or inbalance the relations 
between parameters which may be inherently noisy or 
difficult to measure under any circumstances.  A 
“masking event” can be virtually any parameter p or set 
of values {p1, p2, p3…} that causes a minimization of 
system resources (computational or otherwise) that in 
turn decreases the ability for response to some other ∆pi 
where such variances may cause critical points to 
emerge within the same or other portions of the state-
space [15]. 

Risks of system instability and criticality are further 
exacerbated by conditions that can be introduced from 
external agents and unpredictable configurations into 
which even a well-designed and well-tested system 
(e.g., aircraft, rail, satellite, wireless network) may be 
placed.  External-origin disorders and failures increase 
in relation to not only complexity within a control 
system model and its physical and computational 
implementation, but also in response to other paths to 
vulnerability [1, 6]. 

II. MULTI-AGENCY 

Multi-agent models offer a significant “first-tier” 
move away from dependence upon traditional 
hierarchical and deterministic control schema, as 
illustrated in Figures 1-2.   Such models may be very 
effective in many applications (mechanical and 
manufacturing/assembly systems, management and 
reporting structures) where the re4lations among nodes 
in both horizontal and vertical relations are stable.  
However, many systems, both physical and 
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informational, have precisely the dynamism and non-
linearity that can lead to a breakdown of effective 
control if there are anomaly behaviors undetected and 
insufficiently responded to within the network. 

It is thus argued here that a new type of thinking 
about command and control is necessary, and with it, a 
new type of computing architecture as well, for the 
types of machines and systems that offer such dual-
impact concerns which may be termed “Extreme 
Complex Systems” or XCS.   However, this new 
cybernetics and new computation is not simply a move 
into multi-agent parallelism, which is still inherently 
deterministic (in most architectures; Figure 1).  We 
suggest, on the basis of formal and experimental results, 
that stochastic, randomized, and non-parametric-
dependent modeling may be often more effective for 
stable control of such “XCS” environments, but even 
further, there can be an important value in operating at 
multiple scales of network composition. 

III. MULTI-SCALAR SUB-NETS 

The scales consist of subnet groups which 
themselves consist of lower-scale sub-nets that are 
evaluated and treated as nodes within the higher-scale 
entity and which may be processed also in a stochastic 
manner.  This may consist of randomly skipping over 
large segments of a network when, for instance, the 
probability of there being any significant activity on the 
part of the sub-nets and their elements is low.  This 
action would serve to favor dedicating system resources 
(e.g., sensors, processors, electrical power) toward 
more (likely) critical tasks such as two components 
(e.g., robots operating cooperatively in space with an 
asteroid or EVA astronaut) that are in a resource-critical 
engagement.  For instance, in Figure 1, any subset of 
the multiagent system at right may be grouped together 
and treated as a unit, with the likely proviso that there 
must be at least one arc connecting any given node to 
another node within the overall system.  At a maximal-
scope scale, all of the nodes may be subsumed within 
the higher-order functionality and logic (including 
heuristic-type rules applied) as a single “unit.”  But 
typically the groupings will constitute less than 
complete membership of all agents in the system. 

Figure 1 --- Hierarchical vs. Multi-Agent Control - 
but both still deterministically based [1] 

 

    

Figure 2 --- Multi-Agent Control - but maintaining 
static agent sub-net structures and scales [1] 

Figure 3 – Randomized estimation and control 
coupled with learning and optimization of choice [1] 

Such an XCS-type system can be considered as 
having an unknown and uncertain structure, where that 
structure sk changes in time instances t0,t1,t2,... The task 
of understanding how sk changes at specific instances ti 

and in response to certain parameter changes may not 
be computationally achievable, certainly within finite 
time intervals when change (adaptation) is required in 
order to avoid catastrophic critical values.  The path 
forward to understanding how changes and how to 
adapt in terms of a control system may be realized by a 
technique of dividing the state space into regions, 
clusters, or cellular networks. Clustering of the state 
space may be understood as: 

Xsk = {X1 ,X2,..., Xn(sk) } : X = ∪ i=1,2,0...,n(sk)Xi,  (1) 

where Xi ⊂ X 

The goal from a cybernetic perspective becomes 
then one of identifying changes within dynamically 
defined regions or clusters, making use of simplified 
sampling and adaptation, avoiding the computationally 
intensive and deterministic methods which can be less 
resilient to unexpected and non-linear behaviors, and 
impractical from the standpoint of practical 



  

engineering, especially in the case of microscopic-sized 
or ultra-light devices. 

Networks of both mobile and stationary robots and 
other autonomous or semi-autonomous devices are 
often characterized by uncertainty in data reporting, 
sharing and analysis within the network.  These 
problems become exacerbated in an operating 
environment such as interplanetary space by factors 
such as physical distance (light-years or simply “light-
minutes”).  In more familiar terrestrial applications, 
there are performance and communication reducers of 
bandwidth competition, and also asymmetric threats to 
data integrity (e.g., electromagnetic disturbance, and 
deliberate cyber-hacking).   

More significant in the operational context of a 
cooperative group of robots, for instance, there can be 
problems of conflict or “un-cooperativity” which 
pertain to conflicting agent goals and sharing of 
resources such as energy (fuel, accessory equipment 
and supplies, etc.).  In terms of clustering of the state-
space, adherence to a fixed-scale representation of the 
elements comprising that space and the membership of 
the sub-net groupings therein, will create the risk of 
either elevating or diminishing certain agent goals to 
points (levels, ranks) that are inappropriate for a new 
phase of the system’s behavior and (in the case of a 
robot team assigned a set of tasks) the completion of the 
mission objectives. 

In Figures 4-6, an organized “community” of 
potentially heterogeneous robots is operating to 
maneuver and alter the trajectory of an object such as a 
small asteroid.  Each unit and each grouping of n units 
taken together may be considered as a sub-net, acting in 
both cooperation and/or competition at any point in 
time, for both system resources and for mechanical 
positioning, balancing, and collision avoidance, all of 
the parameters for such determinations being based 
upon extremely non-linear dynamics imposed by the 
behavior of the target (in this case a hypothetical 
asteroid sized from 15m – 1000m in average diameter).  

 

Figure 4 -- Robot pre-configuration in vicinity of 
target asteroid for trajectory displacement– stage 1 

 

Figure 5 -- Robot deployment of tether-net around 
target asteroid for trajectory displacement– stage 2 

 

Figure 6 -- Robot deployment of tether-net around 
target asteroid for trajectory displacement– stage 3 

The three stages illustrated abstractly above can be 
understood in terms of the formation and deformation 



  

of dynamic structures at different scales; e.g., micro-, 
meso- and macro-levels (figure 8).  A combination of 
internal feedback plus external control input will lead to 
a progressive discretization within the state-space, and 
the resulting new structures can be significant for the 
future process of control that seeks to optimize qualities 
such as physical stability, resource management, and 
performance of specific mission tasks for the system (in 
the example of asteroid redirection, thus, the successful 
trajectory modifications being accomplished by the 
“squadron” of robots assigned to the mission, with the 
tools and fuel at their disposal, etc.) 

The dynamic equations for the clustering of the 
state-space (eq. 1) can be expressed as 

xi = _gi (x1, x2, …, xnsk;u;w;qsk ); i = 1,2 …, nsk ;     (2) 
 

where xi is a set of integrated xg on cluster Xi , 
qsk is a finite set of \current" parameters 

This in turn leads to changes in the state-space 
structure that may be represented thus quantitatively 
and visually: 

 

Figure 7 – State-space structure dynamics 

 

 

Figure 8 – State-space structure morphology 

This can also be described in terms of load-
balancing problems, but the problem becomes more 
complicated as the autonomy and independence of the 
agent subsystems increases.  Competition over 
resources can include inadvertent competition for 
access to a physical resource such as a port or fastener, 
or a tool to be employed by one of the robot units.  The 
overall mission task of the robot network (“team”) may 

be further complicated by a combination of other 
factors, all of which carry elements of uncertainty and 
undecidability – for example: 

 fuel/power consumption during repositioning  

 maintaining a steady position relative to 

another moving object 

 irregular and “wobbly” motion of some target 

object (e.g., asteroid or fragment thereof) 

 collision avoidance and consumption of fuel  

 performing work tasks within a prescribed 

period (e.g., sufficient access to sunlight for 

solar panels) 

The principle challenge with XCS is the issue of 
undecidability about critical points and regions, also 
known as singularities.  A general or comprehensive 
model of interaction within distributed and non-
stationary spaces that does not allow for the appearance 
and even dominance of critical points can lead to 
catastrophic results (mathematically and physically).  
Failure to observe minute variations and gradient 
changes can lead to irreversible situations.   

However, such minute variations may be measured 
and analyzed much faster through attention to local 
neighborhoods and cellular-type regions or fields of 
data.  This path has led to new approaches using sets of 
localized models that have simpler and potentially 
faster computational loads and which can be 
conveniently mapped to parallel architectures. Such 
models are characterized by asymmetric, stochastic 
methods for sampling, estimating, and assessing 
predictive values for regions in a data space where 
changes may otherwise be unobserved within 
constraints of computational time. 

Stochastic programming is one framework for 
modeling of optimization problems that involve 
uncertainty in both the identity and interrelationship of 
parameters and in their values at given instances and 
configurations. Whereas deterministic optimization 
problems are formulated with known parameters, real 
world problems almost always include some unknown 
parameters. One of the approaches for solving such 
problems, when the parameters are known only within 
the certain bounds, is called the robust optimization. 
Here, the goal is to find a solution, which is feasible for 
all such data and is optimal in some sense. Stochastic 
programming models are similar in style, but take the 
advantage of the fact that probability distributions 
governing the data are known or can be estimated. The 
goal here is to find some policy that is feasible for all 
(or almost all) the possible data instances and 
minimizes the expectation of some decision functions 
and the random variables. More generally, such models 



  

are formulated, solved analytically or numerically, and 
analyzed in order to provide useful information to a 
decision-maker.  The approximation techniques are 
then extensible to randomized selection and trial (an 
interpolation process) of algorithms for adjusting 
system parameters.   

The Local Voting Control (LVC) protocol 
developed by Granichin et al [2, 6] is one such model.  
It operates with a nonvanishing step-size for conditions 
of significant uncertainty and external disturbances [8, 
9]. The objective is to detect changes that may be 
insignificant in most cases but which can be indicative 
of developing conditions that could have irreversible 
effects.  This stochastic gradient-like (stochastic 
approximation) method has also been used before in 
other works (see, e.g. [3-5]) but with a decrease to a 
zero step-size. Usually, the stochastic approximation is 
studied for unconstrained optimization problems, but 
the above-mentioned results stimulated the 
development of new approaches to track the changes in 
the parameter drift using the simultaneous perturbation 
stochastic approximation [6]. 

Consider an experimental platform which can 
demonstrate the extension of the LVC model to multi-
scalar measurements and evaluations.  This experiment 
involves a wing structure whose surface is covered with 
sensor-actuator pairs that serve as mini-wingflaps, each 
coupled with a pressure sensor, such as illustrated in 
Figure 9. Each sensor-actuator unit may be considered 
as an active agent in a computational network.  
However, sampling – and motor response – can be 
performed asynchronously and asymmetrically – this 
derives from the use of the stochastic approximation 
methods.  This also enables parallel processing, 
asynchronously and asymmetrically, at different scales 
(orders) of complexity and set-membership among the 
elements (action-parameters) in the overall system. 

 

Figure 9 --- “Wings with feathers” [2] 
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In a turbulent flow environment, with no responsive 
adjustments to the sensor-actuator units, LV readings 
across the wing surface will resemble a “kaleidoscope” 
effect among the regions, as shown in Figure 4 below.  
All actuator units “feathers”) in the wing remain 
unadjusted and with no change in orientation in 
response to changes in applied external pressures.  The 
consensus “goal” state (illustrated in Figure 5) provides 
for uniform or within-threshold values from all LV 
“cellular regions” (clusters) during turbulent conditions, 
achievable in this case through servo-controller 
adjustments of the sensor-actuator “feather” units.   

Figure 10 --- Wing sensor field under turbulence [2] 

Figure 11 --- Wing consensus state in turbulence [2] 

 

Within XCS operations there are critical time 
intervals for such adaptations that can avert an critical 
“singularity” event affecting the entire system.  
Randomized alterations to small regions (clusters) of 
the system space have two unique advantages over 
models that attempt to comprehensively address the 
entire system.  First, results can generally be achieved 
faster and with fewer computational resources.  This is 
significant for mobile, remote and compact device 



  

platforms (such as satellites and other space vehicles, 
robotic or otherwise).  Secondly, and very significantly, 
errors in the decision process – which can be frequent 
in beginning stages of a cybernetic system adaptive 
learning process – will be more localized, more 
containable, and more easily correctable, than errors 
which affect large sectors of some system performance.  

IV. CONCLUSION 

A complex system may have many unobservables 
among those parameters deemed significant for 
determining the next steps in any control process.  This 
becomes more complex as the number of discrete 
elements in the system increase or act in combined 
cooperative and competitive cycles with respect to one 
another. 

Control functions may be distributed across virtual 
as well as literal physical surfaces and spaces.  A 
network of robots manipulating amorphous shapes such 
as asteroids or rocks in space or on the lunar surface 
will operate with each robot element having multiple 
axes of motion and angular momentum.  There are goal 
states which involve positioning of devices and 
avoidance of collision impacts including those that 
could occur between the cooperative robots.  For some 
levels of extreme complexity, a rethinking of what we 
mean by “control” and by “learning” and indeed by 
“intelligence” is required, and in this process, also, a 
rethinking of how we can perform the computations 
that are required to operate multiple motors in parallel.   

This rethinking includes a revisiting of what is 
meant by both terms, “uncertainty” and “freedom.”  
Both are essential to control.  There must be sufficient 
freedom of motion in different directions and this 
implies that there will be uncertainty with respect to 
how some component can move.  (“Motion” here is 
certainly not restricted to 3D physical motion but can 
be understood figuratively as well, in terms of moving 
into, over, within different semantic spaces.) 

This is also a rethinking of what is meant by terms 
such as “stochastic” and “random” in the context of 
control.  Generally something “random” seems to be a 
quality to avoid in matters of control.  But definiteness 
and rigidity in a control structure can lock a system or 
its parts into a dynamic that will result in failure or at 
least loss of efficiency and optimal performance.  We 
are only at the beginning of what appears to be a 
revolution in how we think about computability and 
control, but the key may be found in looking at the 
simpler ways that some tasks are done in Nature, in 
Biology, more than at any other example.  “Life itself” 
makes a strong case for doing some actions by trying 
out purely random varieties and then evaluating – on 
more than one scale of meaning at a time – which ones 
are probably going to be more suitable for the goals at 

hand – which themselves may be multiple and in 
competition with one another.  Ultimately decisions do 
get made, by microbes and humans and then there is the 
challenge of how the system can adapt to the changed 
environment it has helped to create for itself.  The 
adaptive element is the kernel and heart of intelligence, 
and the thing that makes the difference between 
repetition of the same mistakes or advancement to a 
new level of understanding, mastery, and control. 
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